A Novel Method for Road Detection Using High Resolution Satellite Images and Lidar Data Based on One Class Svm and Lbp Features
نویسنده
چکیده
Now a days, fast extraction of road network is a challenging task especially in urban areas where roads are covered by height objects like trees, buildings, parking lots, vehicles etc. Imagery, especially high resolution image is main source for road detection as it contains rich texture and spectral information. This paper proposes a method based on merging of features of high resolution satellite images and their corresponding lidar data. The intensity of Lidar point cloud data can be used as an additional feature for road extraction as road surfaces have similar reflectance. Lidar data which has LAS 1.1 format has been taken corresponding to the high resolution satellite image. Local binary pattern is the feature extraction method used to extract features of the data. The merged features of these two undergo a one class SVM classification to increase the accuracy. The overall accuracy and kappa coefficient of the proposed method were 95.05% and 0.88 respectively. The results confirmed that this method has potential for detecting roads in urban areas using high resolution images and lidar data.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملIntegration of Visible Image and LIDAR Altimetric Data for Semi-Automatic Detection and Measuring the Boundari of Features
This paper presents a new method for detecting the features using LiDAR data and visible images. The proposed features detection algorithm has the lowest dependency on region and the type of sensor used for imaging, and about any input LiDAR and image data, including visible bands (red, green and blue) with high spatial resolution, identify features with acceptable accuracy. In the proposed app...
متن کاملSegmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)
The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information. There are different types of segmentation methods among which using superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...
متن کاملAutomatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملDeveloping a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature
According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...
متن کامل